TABLE 12-III							
Approx. D.C. Output		Transformer Rating		L ₂ H.	Voltage Rating	R	Approx. Bleeder- Load
Volts	Ma. 1	Approx. V.R.M.S.	Ma.	Н.	C1, C2	Watts	Output Volts
400/500	230	520/615	250	4	700	20	440/540
600/750	260	750/950	300	8	1000	50	650/800
1250/1500	240	1500/1750	300	8	2000	150	1300/1600
1250/1500	440	1500/1750	500	6	2000	150	1315/1615
2000/2500	200	2400/2900	300 4	8	3000	320 2	2050/2550
2000/2500	400	2400/2900	500	6	3000	320 2	2065/2565
2500/3000	380	2900/3450	500 5	6	4000	500 a	2565/3065

- Balance of transformer current rating consumed by bleeder resistor.

 **Use two 160-watt, 12.500-ohm units in series.
- 3 Use five 100-watt, 5000 ohm units in series.
- Regulation will be somewhat better with a 400- or 500-ma, choke,
- 5 Regulation will be somewhat better with a 550-ma. choke.

voltages for the rectifier and other tubes in the receiver or low-power transmitter. Transformers are available with ratings to 1200 volts at 200 ma.

Fig. 12-14 shows a two-section fileter with capacitor input. However, depending upon the maximum hum level that may be allowable for a particular application, the last capacitor and choke may not be needed. In some low-current applications, the first capacitor alone may provide adequate filtering. Table 12-II shows the approximate full-load and bleeder-load output voltages and a.c. ripple percentages for several representative sets of components. Voltage and ripple values are given for three points in the circuit-Point A (first capacitor only used), Point B (last capacitor and choke omitted), and Point C (complete two-section filter in use). In each case, the bleeder resistor R should be used across the output.

Table 12-II also shows approximate output voltages and ripple percentages for choke-input filters (first filter capacitor omitted), for Point B (last capacitor and choke omitted), and Point C (two-section filter, first capacitor omitted).

Actual full-load output voltages may be somewhat lower than those shown in the table, since the voltage drop through the resistance of the transformer secondary has not been included.

Table 12-III shows typical values for representative higher-voltage supplies, based on commonly available components. A full-wave rectifier circuit and two-section filter with swing-choke input are assumed. A pair of 816 rectifiers could be used in the 400/500-volt supply; the others would require 866A or 3B28 rectifiers. L_2 is the smoothing choke, C_1 and C_2 the filter capacitors, and R the bleeder resistor. Ripple in the output of the first filter section will be approximately 5 per cent with a 4-µf. capacitor, or 10 per cent with a 2-µf. capacitor. Transformers made for amateur service are predominantly designed for choke-input filters; the d.c. output current rating of such transformers should be decreased about 30 per cent when used with capacitor-input filters.

Fig. 12-15—A—A series voltage-dropping resistor.

B—Simple voltage divider.

$$R_2 = \frac{E_1}{I_2}; R_1 = \frac{E - E_1}{I_1 + I_2}.$$

l₂ must be assumed.

C-Multiple divider circuit.

$$R_3 = \frac{E_2}{I_3} I R_2 = \frac{E_1 - E_2}{I_2 + I_3} I R_1 = \frac{E - E_1}{I_1 + I_2 + I_3}.$$

Is must be assumed.

